

Improved Materials and Innovative Injection Moulding Process

for More Performing and Aesthetics Enhanced PMMA Plastic Parts

ESTCRATCH PILOT — ()

MATERIAL DEVELOPED

Optimized PMMA Nanocompounds for injected thermoplastics

Advantages:

- **IMPROVED SCRATCH RESISTANCE**
- More than 140% compared to standard \mathbf{M} **PMMA**

LOW VARIATION OF GLOSS

Gloss equal to the 98% of the gloss of the reference material

LOW VARIATION OF COLOUR

Low color variation of the PMMA material developed compared to reference materials

TRIBONANO PILOT - - -

Advantages:

- Reduction of production phases and costs as the parts are made in a single step and several decoration and labelling processes can completely be removed
- More green manufacturing process due to lower energy consumption, less transportation and increased recyclability as parts consist of fewer materials
- Nanostructured surfaces developed can also be used to add other functional effects to a plastic surface such as antireflection, self-cleaning, increased wetting and reduced friction

Result achieved:

B-pillars fulfilling **OEM** requirements and combining diffractive and plasmonic colors with anti-scratch properties

Nanocermet micropowder materials and innovative spray coating technology for metal parts with improved wear resistance

MATERIAL DEVELOPED

Nanostructured Coatings

Advantages:

PROCESS

SOLID-STATE DEPOSITION PROCESS THROUGH **COLD SPRAY TECHNIQUE**

EARLY ADOPTER

INCREASED STRENGTH AND RESISTANCE

FASTER STRAIN RATES

Advantages:

- Spray of thermally sensitive materials (eg. nanomaterials)
- Limited oxidation and interaction with environment
- Spray of fine cut size powder < 10 micron
- Avoid grit blasting preparation of substrate
- No barrel build-up
- Retain properties of initial powder materials
- Dense, hard, cold worked microstructure
- High thermal and electrical conductivity
- Reduced thermal heating and residual stresses

HARDCAST PILOT — ()-

Nano-improved materials and suitable industrial casting process for metal parts with enhanced strength and hardness properties

MATERIAL DEVELOPED

Nanoreinforcements for improved metal castings

Advantages:

EASIER DISPERSION AND WETTABILITY

IMPROVEMENT OF PROPERTIES OF METALLIC

PROCESS

NEW GRAVITY CASTINGS PROCESS \gg FOR NANOREINFORCED METAL PARTS

Advantages:

- Robust casting process allowing homogeneous structure and properties of the nanoreinforced components
- Completely safe process, similar to the ones currently used in the foundries where nanometer size powders are not handled
- Suitability to most common stirring systems

EARLY ADOPTER

Need:

Improved DURABILITY (6000 h, i.e. 5000 h +20% of target) and Increased **EFFICIENCY**

Result Achieved:

Increase of the mechanical properties of the components

IZADI-NANO2INDU\$TRY Project Consortium

Selected Component: Swash plate of hydraulic motor

Authors

Cristina Elizetxea (1), Maider García de Cortázar (1), Ane Irazustabarrena (1), Isella Vicini (2), Elena Melotti (2) (1) Fundacion Tecnalia Research & Innovation – San Sebastian (Spain) (2) Warrant Group S.r.l. - Gruppo Tecnoinvestimenti – Correggio (Italy)

> nano2industry

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No686165.

Powered by Warrant Group S.r.l.